2022-3-4
我们在日常投资理财中,会遇到很多利率。比如银行的定期存款利率,活期存款利率,理财年化利率,房贷的利率等等,那么这些利率到底有什么区别呢?
这里先指明一个误区,一般说的利率,是通过出借本金,根据本金占用的实际时间来支付利息,从而算出利率。而有些朋友经常会把利率和消费分期的手续费混为一谈,把消费分期的手续费率和等额本息的房贷利率张冠李戴,弄出来一个所谓实际利率是名义利率的2倍的结论,这是大错特错的。银行也绝不会把手续费等同为利息,当然有良心的银行会在页面中告知你分期的等效利率,这个利率通常是消费贷手续费率的2倍左右。所以一旦说的是利率,定义就是明确的应该以实际占用的本金为基数。
然后利率一般分为3类,单利、复利和连续复利。比较常见的单利有银行定期存款,LIBOR,SHIBOR,债券的票息等,一般都是以年利率报价。单利的计算方法很简单,直接用本金*年利率*时间周期来计算利息。时间周期不足一年的,则用年利率除以12得到月利率,除以360得到日利率,除以1080得到8小时利率,除以31104000得到秒利率。然后同步把时间周期换算成相同的单位即可。也就是说,一般借款周期小于一年时,其年化收益率会高于年利率,而周期大于一年时,年化收益率则会低于年利率。
而复利最常见的就是年化收益率。一般是计算一定时间周期内的收益率,然后按复利进行年化后得到的收益率。最常见的我们买T0理财或货币基金时,会给一个近7日年化,计算时根据前7天的每万份收益,按日计算复利得到近7天的总收益率,即[Π(1+Ri/10000)]^(365/7)-1 (其中i=1~7) ,而实际中也有用360而不是365的,比如上海银行的易精灵就是用360来计算的年化收益率,如果按正常365计算,会比上海银行官网公布的收益率高个0.04%左右。
而连续复利则更广泛的用在金融工程当中,是做量化的人最常用到的。这里不得不提的就是自然常数e,据说这个e正是几百年前数学家研究复利的时候得到的。经常会看到一些书上举例,一个年利率(单利)100%的投资,年底应该收到本金的2倍。但如果按半年计算复利,就会是2.25倍,按月计算,就是2.61倍。大家就会说,那如果这个结算收起无限往下分,是不是收益会越来越高呢?这个答案是,也不是。比如按秒计算复利,会得到2.71828178…倍。这个数字是不是很熟悉,基本上很接近e了。虽然这个收益随着分割的越来越细确实是递增的,但自然常数就是固定单利后同期复利的天花板。也就是假设一年按单利是x的话,按复利最多也就是e的x次方。其实这也就是e的一个定义。
当然自然常数很有意思,通过一些数学变化,它既可以是复利的天花板,也可以是全体自然数阶乘倒数的和。我们做投资,经常说做到10年10倍,但比较N年N倍这种说法的话,e年e倍就是这类年化收益率的最大值,达到44.47%左右,如果取整数年,那最高的就是3年3倍了,年化收益率为44.22%。但这长期看几乎是不可能完成的任务。我一般把终极目标定在15年15倍,也就是年化差不多20%不到更合理一些。
今天市场又来了一次重击,基本是全军覆没,【战士】又丢了一个人头。今年到目前为止,已经丢了4个头,还没有一杀进账,也是挺难的了,也许这就是熊市的常态吧。最近垃圾债继续小步加仓,前几天回来的利息,华夏幸福杯水车薪般的回款,也悉数加了进去。进入好价格的地产债也越来越多,这里面肯定有错杀的,也有未来真的还不上钱的,不过这是很难在现阶段分辨的,我们能做的,就是把大饼摊好,最终赚个平均收益也不错。
2022-03-04 16:21
发表回复